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A number of assumptions used in the derivation of the combinatorial entropy term of Honig-Flory- 
Huggins are shown not to be valid for the case of dilute solutions in water: these include (a )  only 
combinatorial entropy need be considered, ( b )  the solution configuration is random, and ( c )  random 
distribution of molecular segments in the solution lattice. Accordingly, the combinatorial term as 
calculated by Honig-Flory-Huggins is not appropriate for aqueous solutions, and is particularly 
inappropriate for dilute solutions in water. It is suggested that the use of the Honig-Flory-Huggins 
combinatorial entropy term to ‘correct’ observed thermodynamic parameters for solvation of solutes 
in water be abandoned. 

The dissection of the total Gibbs energy of hydration of 
molecules, or of the total Gibbs energy of transfer from water 
to non-polar solvents, into component parts is of considerable 
importance in many areas of chemistry. If the Gibbs energy 
of interaction can be obtained from the total Gibbs energy of 
hydration or of transfer, the solute-water interaction term will 
lead to a quantitative estimate of the hydrophobic effect. In this 
way, the hydrophobic effect of alkanes has been deduced, which 
in turn leads to the hydrophobic effect of alkyl side-chains in 
amino acid and other residues. Quite recently, it has been 
argued by Honig et aI. ’ that the dissolution of a gaseous solute 
molecule in a solvent leads to an increase in the availability of 
volume for a solvent molecule, and hence to an increase in the 
entropy of the system. There will thus be a decrease in the Gibbs 
energy of the system given by AG(Honig) = - RTlnAS(Honig), 
where we refer to the Gibbs energy and entropy due to the 
solvent expansion as AG(Honig) and AS(Honig) respectively. 
Since this entropy term of Honig can be equated to the Flory- 
Huggins combinatorial entropy, we shall refer to it as the latter. 
It follows from the argument of Honig et al. ’ that if the Gibbs 
energy term, corresponding to the combinatorial entropy, is 
not taken into account, incorrect values of the solute-water 
interaction term will be calculated, and will lead to incorrect 
values of the hydrophobic effect. Indeed, Honig et al.’ have 
even argued that experimental Gibbs energies of hydration of 
solutes should be ‘corrected’ for the combinatorial entropy 
effect. 

There are other severe consequences if Honig’s argument is 
valid. Thus if a peptide, or other, side-chain in aqueous solution 
is transformed into another side-chain of different volume, by 
the computational alchemical method of McCammon,2 there 
will be a combinatorial Gibbs energy term, AG(Honig), to take 
into account. This term is by no means negligible, being some 
2.7 kcal mol-’ for the transformation of a propyl group into an 
octyl group in water at 298 K.7 Furthermore, this combinatorial 
term is not limited to the case of non-polar side-chains; any 
alchemical transformation that involves a change in solute 
volume will necessitate the incorporation of a combinatorial 
term into the calculation. Indeed, calculation of AGO for any 
equilibrium in which there is a change in volume will require 
incorporation of such a term. Consider a simple equilibrium 
such as eqn. (1). The volume change, A V, will be given by eqn. 

(2) where V(X)  is the partial molar volume of species X. Now if B 

AV = V(C) - V(A) - V(B) (2) 

is a molecule such as haemoglobin, with rather hydrophobic 
pockets or cavities it might be possible to sequester non-polar 
solutes with but little change in volume, so that V(B) = V(C), 
and thus AVO = - V(A). Even in the case of sequestering a 
solute of only moderate size, such as toluene with a partial 
molar volume in water4 of 98 cm3 mol-’ at 298 K the 
combinatorial term will contribute no less than 2.6 kcal mol-’ in 
Gibbs energy. We give this example, not in any way to suggest 
that haemoglobin actually does sequester toluene with AV = 
-98 cm3 mol-’ in water, but just to illustrate the possible 
consequences of Honig’s argument. The combinatorial term of 
Honig has already been used in the calculation of the solubility 
of hydrocarbons in water5 and so consideration of Honig’s 
argument is of some urgency. 

Honig et a!.’ show that the contribution to the entropy of the 
system from changes in volume is given in eqn. (3) where n2 and 

-AS/R = n21n(n2V2/V) + n,ln(n, V J V )  (3) 

n ,  are the amounts in moles of solute (2) and solvent (l) ,  of 
molar volume V2 and V,, in a mixture of volume V. This is 
exactly the same equation derived by Flory and by H ~ g g i n s , ~  
and known in polymer chemistry8 as the Flory-Huggins 
equation for the combinatorial entropy. In order to obtain the 
corresponding entropy change for the case of an infinitely dilute 
solution of a solute in a solvent, eqn. (3) must be differentiated 
with respect to n2 at constant n,, P and T. Honig et a/.’ then 
obtain the expression given in eqn. (4) where r = V 2 / V , .  The 

(4) - A S  = R(l - Y) = -AS(Honig) 

corresponding expression for AG is given in eqn. (5). 

AG = RT(1 - r )  = AG(Honig) ( 5 )  

With slightly different assumptions in the differentiation of 
eqn. (3), Barton8 obtains eqn. (6) .  

t 1 cal = 4.184 J. AG = RT(1 - r )  + RTln(r) = AG(Barton) (6) 
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Table 1 The Honig and Barton combinatorial contributions to the 
Gibbs energy of hydration of gaseous solutes in water, in kcal mol-' 
at 298 K 

Solute VZ r AG( Honig) AG( Bart on) 

Propane 81 4.5 2.1 1.2 
Octane 164 9.1 4.8 3.5 
Decane 196 10.9 5.9 4.5 
Hexadecane 294 16.3 9.1 7.4 
- 500 27.8 15.9 13.9 

Table 2 Values of the enthalpy of solution of liquids in water, in kcal 
mol-' at 298 K 

Solute AH" Solute AW 

Ethane - 2.4 Formamide 0.5 

Hexane 0.0 N,N-Dimethylformamide - 3.9 
Heptane 0.6 N-Methylacetamide 0.9 
Propanone - 2.4 N,N-Dimethylacetamide - 5.1 

Propane - 1.8 N-Methylformamide - 1.8 

Propan-1-01 - 2.4 N-Ethylformamide -2.3 
Propylamine - 5.9 N-Ethylacetamide - 3.7 

These expressions are general for the combinatorial entropic, 
and consequently Gibbs energy, effects due to differences in size 
of solute and solvent molecules. However, because of the small 
size of a water solvent molecule, the term r = V2/V1 becomes 
much larger when water is the solvent than with any other 
solvent. We give in Table 1, some calculated values of the 
combinatorial term for the solubility of various gaseous solutes 
in water, as the Gibbs energy contribution to the total Gibbs 
energy of hydration. In these calculations, V ,  is taken as the 
solute molar volume, although as pointed out,' the solute 
partial molar volume would be more correct. The volume of 
water is taken as 18 cm3 mol-'. We also give in Table 1, the 
contribution for a solute of molar volume 500 an3 mol-', to 
illustrate the effect for a molecule of the size of a small peptide. 

As shown in Table 1, and also by the illustrations we gave in 
the introduction, the Honig combinatorial entropy term leads 
to very large Gibbs energy corrections when water is the solvent. 
The corrections as calculated by the method of Barton are 
smaller, but are still so large that some assessment of the 
combinatorial entropic effect is urgently required. 

The Flory-Huggins derivation of the key eqn. (3) is basedg 
on a lattice theory of mixing. It is assumed that ( i )  the pure 
solvent, the pure (polymeric) solute, and all intermediate 
compositions can be accommodated in the same lattice, (ii) only 
the combinatorial entropy need be considered, (iii) the solution 
configuration is random, and (iv) when a molecule ( i  + 1) is 
placed in the lattice, the segments of the i molecules previously 
added are distributed at random throughout the lattice. 

These various assumptions, which are implicit in Honig's 
derivation and are spelt out in the Flory-Huggins deri~ation,~ 
can now be considered. Assumption (ii) cannot be correct for 
any solvent, and is particularly wrong for water as a solvent. 
The entropy of mixing will include not only the combinatorial 
entropy, but also that due to the dissimilarity in free volume of 
the two components, and that due to structural effects. Thus, 
although the original Flory-Huggins theory correctly predicts 
phase separation in polymer solutions on cooling, it does not 
predict such separation on heating; this is usually attributed lo  

to neglect of the free volume dissimilarity. Assumption (izi) is 
certainly not valid for aqueous mixtures, because the solution 
configuration will not be random. Numerous experimental ' , I 2  

and theoretical ' 3914 studies show specific hydration of solutes in 
water, which results in non-random configurations. Assump- 
tions (iv) is particularly wrong for the case of the dilute solutions 
considered by Honig et al.' Segments of the i molecules 
previously added are not distributed at random through the 
lattice; in reality, they occur in sequences of consecutively 
occupied cells. Indeed, Floryg himself stated that the original 
Flory-Huggins theory was inappropriate, in general, for dilute 
polymer solutions. 

We can conclude that the Honig-Flory-Huggins eqn. (3)-(6) 
are generally not valid in the dilute solution case for any solvent, 
they are not valid for aqueous mixtures, and they will certainly 
not be vafid for dilute solutions in water solvent. 

The Flory-Huggins combinatorial entropy term can be 

regarded* as a correction for the size effect to a reference 
mixture in which the enthalpy of mixing is zero, and the only 
entropy change on mixing is given by eqn. (3). Now mixtures 
with water, as we have pointed out, cannot simply be regarded 
as statistical, and generally do not give rise to a zero enthalpy 
term. In Table 2 are listed some for the enthalpy of 
solution of liquids in water at 298 K .  In most cases, the enthalpy 
is not zero at all, especially for the important amide solutes. 

Our conclusion is that the Honig-Flory-Huggins combin- 
atorial entropy correction is not appropriate for systems, such 
as aqueous mixtures, in which structural features of the solvent 
can lead to non-random mixing. Whether or not some modified 
or damped-down version of the combinatorial entropy cor- 
rection is appropriate, is another matter. As regards polymer 
mixtures, both Flory l 7  and Patterson '* have developed further 
theories but both of these theories are only semi-quantitative in 
the case of a non-polar polymer in a polar solvent. 
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